

Seminar on Research and Development Work Housing Department, HKSAR Government

Reliability-centered Lift Maintenance A Proposal for Research

Prof. Francis W H Yik & Dr. Joseph H K Lai

Department of Building Services Engineering The Hong Kong Polytechnic University

24 May 2010

Levels of Building Performance

Levels of Building Performance

The Weakest Link

- Sustainable building entails integrated solution from a life cycle
 perspective
- Up-keeping in-use performance of buildings, especially their building services installations, entails:
 - Proper operation and maintenance (O&M) planning and execution
- This, in turn, needs to be underpinned by:
 - Reliability-centered maintenance
- So far, little attention has been given to O&M, not to mention reliability analysis of building services systems in buildings

Perceived Situation

- Building services installations are generally regarded as highly reliable, as they are typically equipped with:
 - Multiple units of equipment/component
 - Stand-by units
 - Consequences of failure not catastrophic
- The last point does not apply to Fire Services and Lift installations
 - But, regulatory controls on their maintenance are already in place to ensure they can operate safely and reliably at all times

Questions

- Are our building services installations sufficiently reliable?
- How to measure their reliability and do we have a minimum standard?
- Without measurement and benchmarks, how do we know we are using sufficient resources, and are using the resources efficiently, for their maintenance?
- Reliability analysis is needed for providing answers to the above questions (see example that follows).

- Basic concept:
- Reliability, r(t), is the probability that a system or component will continue to perform normally up to time t.
- r(t) drops with time of use but can be restored to a high value (e.g. as good as new) after maintenance.
- Availability, a(t), is the probability that a system or component will be able to perform normally at time t.

Example Reliability Analysis

• The following summarizes the events that would lead to failure of a lift and the related reliability data:

Basic Events (all in series)	MTTF	λ	r ₃₀	MTTR	μ	$a(\infty)$
	(d)	(d-1)		(d)	(d-1)	
E1 Rope broken	6000	0.000167	0.995012	5	0.2	0.999167
E2 Pulley broken	6000	0.000167	0.995012	5	0.2	0.999167
E3 Door failure	150	0.006667	0.818731	1	1	0.993377
E4 Control failure	100	0.010000	0.740818	0.5	2	0.995025
E5 Motor failure	450	0.002222	0.935507	2	0.5	0.995575
E6 Elec. supply failure	300	0.003333	0.904837	0.5	2	0.998336

• For the lift as a whole, $r_{30} = 0.508309$; $a(\infty) = 0.980926$

Example Reliability Analysis

• Which component the failure of which is the most probable cause of out of service of the lift?

Bas	sic Events (all in series)	MTTF	λ	r ₃₀	MTTR	μ	$a(\infty)$
		(d)	(d-1)		(d)	(d-1)	
E1	Rope broken	6000	0.000167	0.995012	5	0.2	0.999167
E2	Pulley broken	6000	0.000167	0.995012	5	0.2	0.999167
E3	Door failure	150	0.006667	0.818731	1	1	0.993377
E4	Control failure	100	0.010000	0.740818	0.5	2	0.995025
E5	Motor failure	450	0.002222	0.935507	2	0.5	0.995575
E6	Elec. supply failure	300	0.003333	0.904837	0.5	2	0.998336

Example Reliability Analysis

• Assume that the lift is under preventive maintenance, with its components replaced periodically as follows:

Component	Cable	Pulley	Door	Control	Motor	Elec.
MTTF (d)	6000	6000	150	100	450	300
Replacement Period (d)	900	900	60	30	150	90

• The reliability of the lift as a whole will be as shown in the next slide.

- Suppose Doors and Motor are replaced more frequently, as shown below:
- Component Control Motor Elec. Cable Pulley Door MTTF (d) 6000 6000 150 100 450 300 Replacement Period (d) 900 30 900 30 90 90
- The reliability of the lift as a whole will be as shown in the next slide.

Conclusion

- Much more can be done by applying reliability analysis but ...
- Such analysis requires availability of the failure and repair statistics, e.g. MTTF & MTTR of components as well as their maintenance and repair costs
- Unfortunately, such data are extremely difficult to obtain the data used in the example above were all **MANUFACTURED** by me!
- Would Housing Department be interested in a joint research study on lift reliability?

End of Presentation

Thank you!