

# **HONG KONG:**

Green building assessment tools
And sustainable practices

#### Andrés Ibáñez Gutiérrez

Bach. Architecture (UNC)
Master in Construction (UNC)
PhD Candidate

Department of Architecture Faculty of Architecture The University of Hong Kong



#### **CONTENTS**

- 1. HONG KONG SITUATION IN THE CONTEXT OF GREEN ARCHITECTURE TODAY. WHAT IS GOING ON
  - 2. PLETORA OF ASSESSMENT TOOLS. WHAT LABEL SHOULD HK FOLLOW?
    - 3. HK CHALLENGES OF GREEN BUILDING
    - 4. HK GREEN BUILDING, WHERE TO GO?
    - 5. CURRENT ACTIVITIES AND PROJECTS.



# 1. HONG KONG SITUATION IN THE CONTEXT OF GREEN ARCHITECTURE TODAY. WHAT IS GOING ON?



# LOCAL OR GLOBAL?

INFLUENCE OF DIFFERENT INTERNATIONAL GREEN BUILDING APPROACHES UK, US, CHINA, JAPAN, AUSTRALIA.

## What is green building?

HONG KONG: Green building assessment tools and sustainable practices

• **Green building** is the practice of *creating structures* and using processes that are environmentally responsible and resource-efficient throughout a building's life-cycle from siting to design, construction, operation, maintenance, renovation and deconstruction (U.S. EPA)



Table: Impacts of the built environment:

| Aspects of Built Environment:                                                          | Consumption:                                | Environmental Effects:                                                                          | Ultimate Effects :                                               |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| Siting  •Design  •Construction  •Operation  •Maintenance  •Renovation  •Deconstruction | Energy •Water •Materials •Natural Resources | Waste •Air pollution •Water pollution •Indoor pollution •Heat islands •Stormwater runoff •Noise | Harm to Human Health •Environment Degradation •Loss of Resources |  |  |

Green buildings are designed to reduce the overall impact of the built environment on human health and the natural environment by:

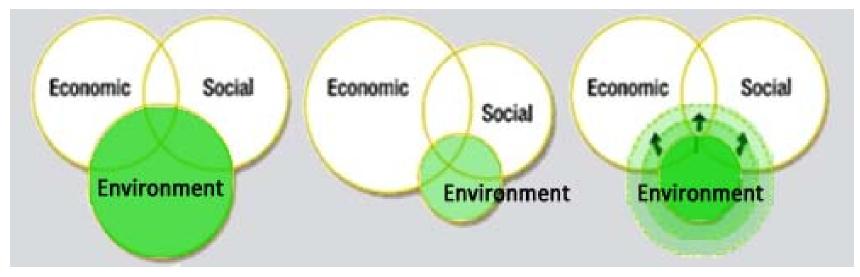
- Efficiently using energy, water, and other resources
- Protecting occupant health and improving employee productivity
- Reducing waste, pollution and environmental degradation

#### What is Sustainable Building?

- The term relates to both process and product;
- It is more meaningful at a national or regional or urban level;
- Strictly speaking, a fully sustainable building would have to, over its lifecycle:
  - Not cause a diminution of fossil fuel supply;
  - Not cause a diminution in net potable water supply;
  - Not cause a diminution in supply of virgin materials;
  - Cause zero net emissions;
  - Cause zero negative ecological impacts;
  - Cause no negative impacts on construction workers, occupants or users (or investors??);
- These are fairly tough targets to meet...

# **Bad Habits in the Building Sector**

| Cause           | Intermediate                                  | End Result                                                     |  |
|-----------------|-----------------------------------------------|----------------------------------------------------------------|--|
| Too much AC     | Excess energy use                             | Excess GHG High operating costs Occupant discomfort            |  |
| Bad orientation | Excess solar gain or not enough               | Excess AC & GHG High operating costs Occupant discomfort       |  |
| Too much glass  | Bad energy performance<br>Too much solar gain | Excess AC & GHG<br>High operating costs<br>Occupant discomfort |  |
| Wretched        | Too much area / volume                        | Excess heating and AC Excess Excess GHG                        |  |
|                 | Excess materials                              | High operating costs Embodied GHG Excess cost                  |  |


# Green Building and Sustainable building (based on performance)

- Fuel consumption of non-renewable fuels
- Water consumption
- Land consumption
- Materials consumption
- Greenhouse gas emissions
- Other atmospheric emissions
- Impacts on site ecology
- Solid waste / liquid effluents
- Indoor air quality, lighting, acoustics
- Longevity, adaptability, flexibility
- Planning for good management
- Cost
- Social and economic considerations
- Urban / planning issues

# **Green Building**

Sustainable Building

#### **The Three Pillars of Sustainable Development**



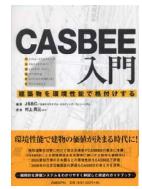
(Source: <a href="http://www.iucn.org/programme/">http://www.iucn.org/programme/</a>)

From left to right:

the theory, the reality and the change needed to achieve Utopia.



# 2. PLETORA OF ASSESSMENT TOOLS. WHAT LABEL SHOULD HK FOLLOW?

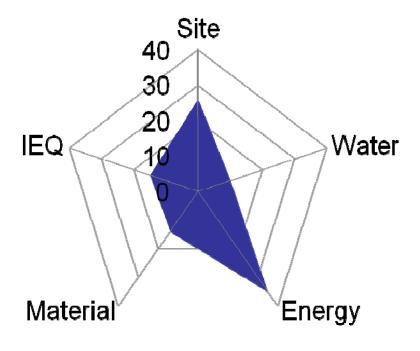



#### HONG KONG....THE BATTLE OF GREEN LABELS?












- LEED USGBC
- BREEAM UKBRE
  - CASBEE Japan
- GB Tool Canada
- HK-BEAM Hong Kong
- Green Building Taiwan
- Green Building Label(GBL)—China
  - Green Star Australia



• LEED – USGBC



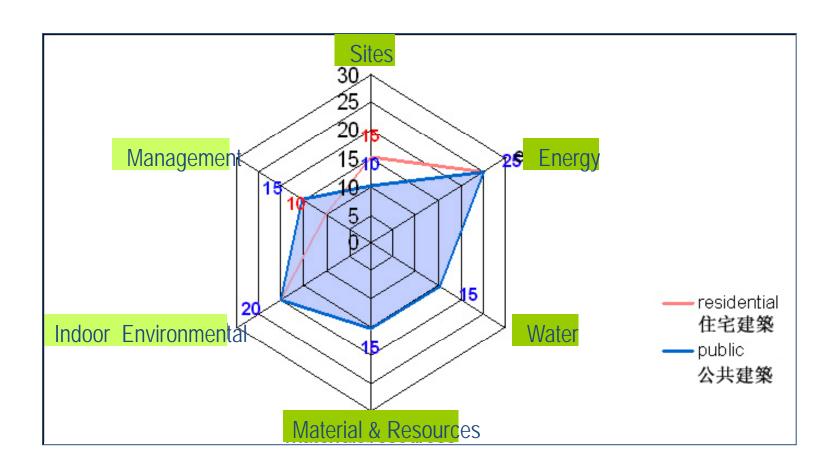
Green Building Label(GBL)–China

# **Green Building Label (China)** (Public buildings)

- ★—— 22 ~ 34 scores
- ★★—— 35 ~ 45 scores
- ★★★—— 46 ~ 57 scores






Green Building Design Label

|            |                                                        | General Items (43 scores) Green |   |   |   |                                         | Building Label            |  |
|------------|--------------------------------------------------------|---------------------------------|---|---|---|-----------------------------------------|---------------------------|--|
| Star-class | Land Saving<br>& Outdoor<br>Environmen<br>t (6 scores) | Saving & Utilization            |   |   | , | Operation &<br>Management<br>(7 scores) | Optimal Items (14 scores) |  |
| *          | 3                                                      | 4                               | 3 | 5 | 3 | 4                                       | -                         |  |
| **         | 4                                                      | 6                               | 4 | 6 | 4 | 5                                       | 6                         |  |
| ***        | 5                                                      | 8                               | 5 | 7 | 5 | 6                                       | 10                        |  |

14

Table 1 Item Requirements for Grade Division (Public Buildings) (Source: Evaluation Standard of Green Building)

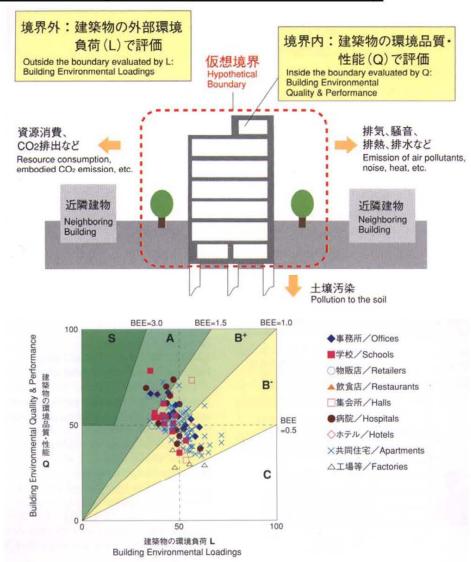
Green Building Label(GBL)–China



#### **CASBEE-NC** (Japan)

#### Comprehensive Assessment System for Building Environment Efficiency

- Four basic assessment tools:
- 1) Pre-design (CASBEE-PD)
- 2) New Construction (CASBEE-NC) \*
- 3) Existing Building (CASBEE-EB)
- 4) Renovation (CASBEE-RN)
- New assessment tools (2005):
- 1) Heat Island Effect (CASBEE-HI)
- Expo Site (CASBEE-R(EXPO))
- Ranking:


Rank S BEE > 3

Rank A 3>BEE>1.5

Rank B+ 1.5>BEE>1.0

Rank B - 1.0>BEE>0.5

Rank C 0.5>BEE>0

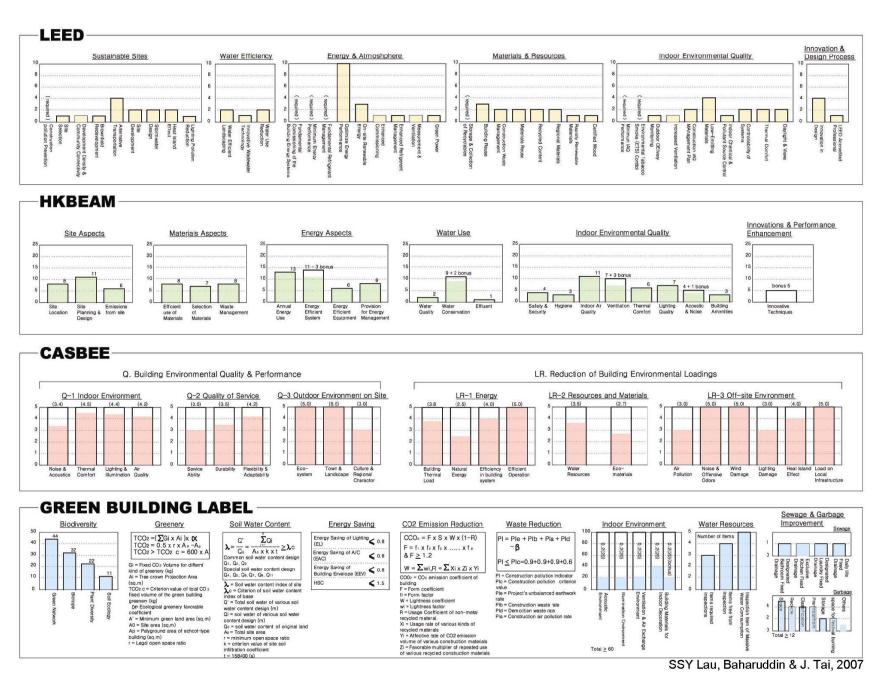


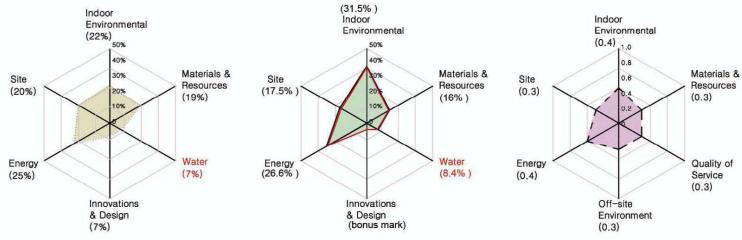
## **Green Building (Taiwan)**

#### Green Building Assessment System



#### 9 Major Indexes:

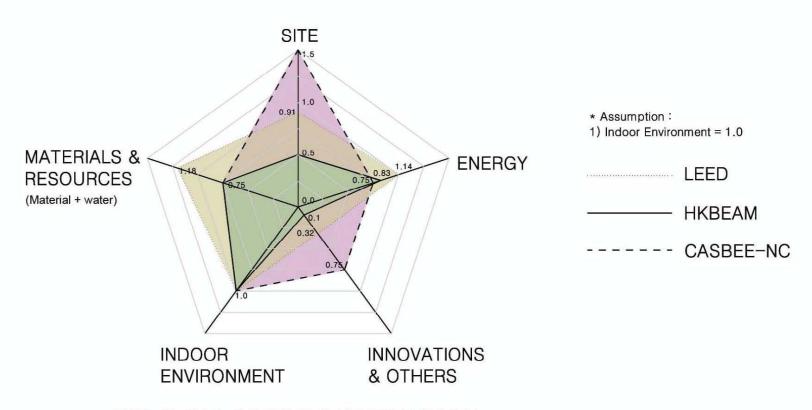

Table 0-1 9 Major Indicators of Green Building Assessment System, Their Relationship with Global Environment


| Major<br>Index   |                                        | Relationship with<br>Global Environment |   |   |    |   |          | Order<br>Arrangement |         |                    |
|------------------|----------------------------------------|-----------------------------------------|---|---|----|---|----------|----------------------|---------|--------------------|
|                  | Name of Indicator                      | Climate                                 |   |   |    |   | Material |                      |         | Operation<br>Order |
|                  | 1. Biodiversity                        | *                                       | * | * | *  |   |          | Large                | Outdoor | First              |
|                  | 2. Greenery                            | *                                       | * | * | *  |   |          | 1                    | ↑       | <b>↑</b>           |
|                  | 3. Soil Water Content                  | *                                       | * | * | *  |   |          |                      |         | ĺ                  |
| Energy<br>Saving | 4. Daily Energy<br>Saving              | *                                       |   |   |    | * |          |                      |         |                    |
| Waste            | 5. CO Emission Reduction               |                                         |   | * |    | * | *        |                      | İ       | İ                  |
|                  | 6. Waste Reduction                     |                                         |   | * | 11 |   | *        |                      | -       | 1                  |
| Health <b>F</b>  | 7. Indoor Environment                  |                                         |   | * |    | * | *        |                      |         |                    |
|                  | 8. Water Resource                      | *                                       | * |   |    |   |          | ļ                    |         |                    |
|                  | 9. Sewage and Gar-<br>bage Improvement |                                         | * |   | *  |   | *        | ↓<br>Small           | Indoor  | ↓<br>Latest        |

#### RANKING:

Number of EEWH indexes passed

## **Comparison and analysis of international tools**






Score Distribution of LEED

Score Distribution of HKBEAM

Weight of CASBEE-NC



RELATIVE SCORE DISTRIBUTION

SSY Lau, Baharuddin & J. Tai, 2007

# References

- USGBC, 2009. Benefits of Green Building. Online at www.usgbc.org
- The Cost of Green Revisited: Reexamining the Feasibility and Cost Impact
  of Sustainable Design in the Light of Increased Market Adoption
  July 2007, Davis Langdon
  The Cost of Green Revisited, an extension of the 2004 Costing Green
  report, shows that many projects are achieving LEED certification within
  their budgets and in the same cost range as non-LEED projects.
- The Costs and Financial Benefits of Green Buildings
   October 2003, Kats, G.
   This report to California's Sustainable Building Task Force includes LEED building analysis.
- http://www.simonfieldhouse.com/Hong\_Kong\_Skyline\_Simon\_Fieldhouse \_small.jpg