Structural Lightweight Concrete

Dr. Tommy Lo
City University of Hong Kong

24 May 2010

Housing Authority Seminar on Research and Development
Developing Innovative Precast Systems, including Application of Structural Lightweight Aggregate and Rapid Hardening PFA concrete, for Economic Production

Housing Authority Research Fund 2003
Research on Material Properties

- Study based on Lightweight Expanded Clay Aggregates (LECA)
- Carried out 60 trials mixes with combinations of water/cement ratio, cement content and PFA content.

Main testing items included:
- Workability [slump]
- Density & Compressive Strength
- Static Elastic Modulus
- Shrinkage
- Water Permeability
- Bond Strength
Workability of lightweight concrete mix

Fresh Lightweight Concrete
Research on Material Properties

- Finalized Grade 30 and Grade 35 concrete mixes according to the strength results.
- Conducted prototype design, laboratory testing and full scale trial for design verification and modification.

Mid-span deflection under serviceability load
LWC Composite slab (6.4m x 4m)
Materials Properties

- Comparable strength
- Shrinkage of the LWAC is about 33% higher than that of NWC.
- Elastic modulus of the LWAC is about 20% lower than that of NWC.
- Bonding strength and water permeability slightly lower but not significant.

Concluded
- Structural lightweight aggregate concrete be used in precast structures such as staircases, slabs, facades and water tanks
Both lightweight aggregate and recycled aggregate are high absorption aggregates that requires pre-wetting before concrete mixing. Compare with the normal aggregate, 30 minutes water absorption of the recycled aggregate ranged between 7%~15%; while for lightweight aggregate, it can be as high as 8%~20%.

2 Patents in 2009 [Dr Tommy Lo/Dr Cui H Z]

Surface Absorption Modifier for High Water Absorption Aggregates

Application Process of Surface Absorption Modifier for Aggregates with High Water Absorption
The surface absorption modifier when applied to the aggregate will form a protective coating on surface of the aggregates which will prevent the water from being absorbed into the aggregate but maintaining a reasonable bonding.

The modifier is particular useful to control the water absorption of lightweight aggregate with a porous surface and for the recycled aggregate with cement paste content, to a level suitable for concrete production similar to the normal aggregate.
Look Forwards

- Composite slab construction to reduce weight
- Concrete repair of old buildings
- Green buildings and resident comfort [noise and temperature]
Structural Lightweight Concrete

Dr. Tommy Lo
City University of Hong Kong

24 May 2010