Suspended Working Platform (SWP) Seminar

Sec 1. SWP Safety Track Record

Sec 2 Improvements

Sec 2.1 Improvements - Equipment

Sec 2.2 Improvements - Installation

Sec 2.3 Improvements - Legislation, COP and

Guidelines, Documentation

Sec 3 Suggestions

Sec 3.1 Suggestions - Guidelines and Documentation

Sec 3.2 Suggestions - Monitoring

Sec 3.3 Suggestions - Equipment

SWP Safety Track Record

In Hong Kong Suspended Working Platform (Gondola) Fatal Accident Due To Equipment Failure Since 1997 is **ZERO**

Aerial Platform Fatal Accident – Due To Equipment Failure

Aerial Platform Fatal Accident – Due To Equipment Failure

Scaffold Fatal Accident – Due To Failure Equipment Failure

Gondola Accident – Equipment Failure

Gondola Accident – Equipment Failure

Gondola Accident – Equipment Failure

Gondola Fatal Accident – Equipment Failure And Operator(s) Failed To Use Safety Equipment Provided

Sec 2. Improvement

Sec 2.1 Improvements – Equipment

Before

Climber Motor WLL 500 kg

WLL 630 kg to WLL 800 kg

Climber Disc Motor without cooling will overheat when continue operating i.e. tall building

Improvement

Motor with heat sink and cooling fan

Excessive wear and tear of sun gear lead to gear box failure

Improvement

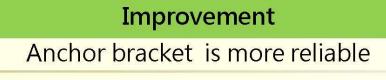
Worm gear

Excessive wear and tear of sun gear lead to gear box failure

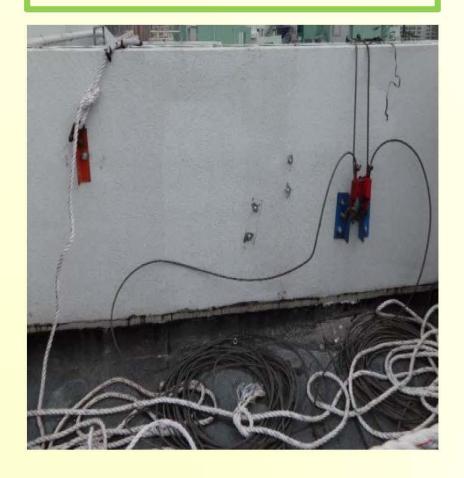
Improvement

Sun gear increase in size

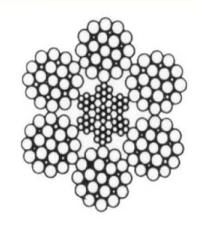
Safety Lock (centrifugal type) fails to protect SWP from excessive tilting in slow failing e.g. gear box failure, dead man switch malfunctioning

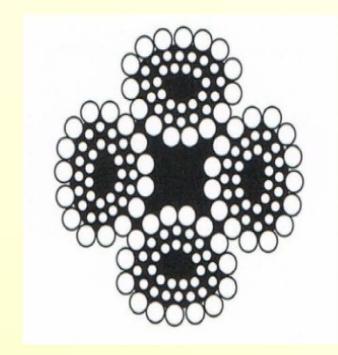

Improvement

Dual protection lock



BeforeEye bolt is unreliable




Suspension wire - 6 strands bird caging , kinking

Improvement

Torque less wire - 4 strands

6 x 25 FW (12/6 & 6 F/1)

Will cause damage to wire rope, also time consuming to install

Improvement

Wedge socket less damaging to the suspension wire, Save installation time

Hand tools are slow and no measurement of tightening torque

Improvement

Cordless power tools are more efficient and tightening with more accurate torque

IP 44 weather proof insufficient protection against ingress of water

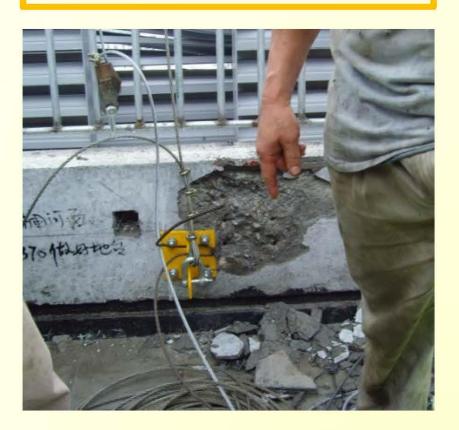
Improvement

IP67 plug employ watertight

Sec 2.2 Improvement – Installation

Anchor Bolts Failure

Improvement


Clamp , wrap round , instead of pulling out the bolts shearing of the bolts to be employed

Anchor bolts damaging building structure

Improvement

Clamp , Wrap round , Non destructive method

Building structure damage due to overloading

Improvement

Inner pulling method , Saddle method

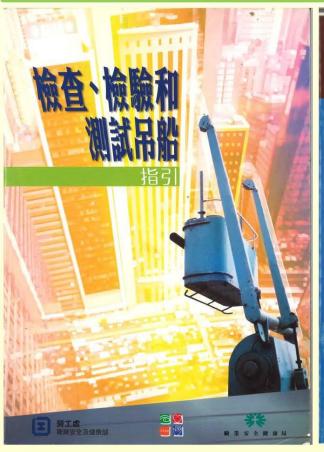
Anchor bolts damaging building structure

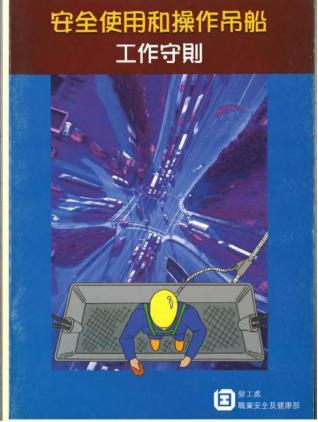
Clamp , wrap round , Non destructive method

Failure of outrigger (COP sect 2 2.1)

Improvement

Saddle operation




Sec 2.3 Improvement – Legislation COP and Guidelines

F&IU Cap 59
(Lifting Gear and Lifting Appliance)
Regulations
Lack of standard and rules

Improvement

COP, F&IU Cap 59 (SWP) Regulations setting written guide line for partitioned

Court Case

Court Case

the Code of Practice of Labour Department provides guideline for practitioners. It does not mean that the practitioner must install outriggers as illustrated by the Code. The practitioners must, however, ensure that the outriggers was firmly anchored.

The Judge further states that the code of Practice of Labour Department provides guideline for practitioners. It does not mean that the practitioner must install outriggers as illustrated by the Code. The practitioners must, however, ensure that the outriggers was firmly anchored.

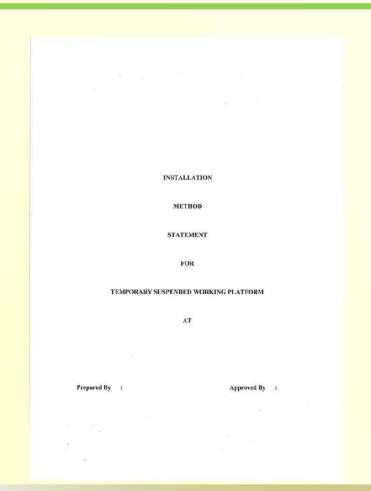
Solely relied on installation skill and experience of individual worker Lack of standard and reference

Improvement

Installation instruction provide standard and guide line for installation workers

Gondola
Installation
Instructions

吊船 安裝指南


Revision 3

(Revised Date: 02 April 2015)

No documents to serve as reference for installation workers

Improvement

Installation method statement as guideline and reference for installation workers

No design calculation
Practitioner has no information of
the building structure

Improvement

provide structural information for practitioner

Structure Calculation

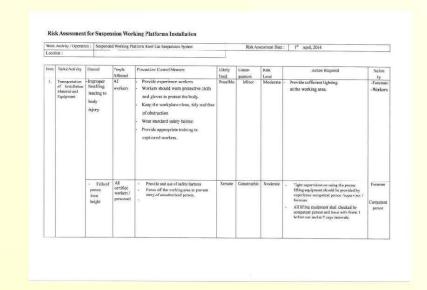
10

Gondola System

For

Development

Of


FEB 2015

Registered Structural Engineer

Practitioner has no information of the risk they are facing and safety measure to be taken

Improvement

Provide systematic assessment of risk portioned are facing and safety measure to be carry out

Sec 3. Suggestions

Sec 3.1 Suggestions – Guidelines

No loading information exchange form may leads to overloading of SWP during operation

Suggestion

To provide important loading condition and requirement to the practitioner for SWP design

	Weight U																		
Size metre)	Configuration	Side Fencing Plate	Bottom Plate	End Stirrup	Walk - Throug h Stirrup	Joining Legs	Total Cage Weight	Double Deck	LTD 630 Climbers	Contro I Box	Safety	Wire Pulling Weight s	Main Suspensi on Wires 70M	Secondary Suspensio n Wires 100M	555000000	Self Weight	WWL - workers + tools + material	Total Weight Under Suspension Mechanism based on WLL of climbers	Material based 2 workers 90kg each as per COP
0.5 M	0.5	20	8	46	0	0	74	148	96	14	10		35		23	726	674	1000	494
1.0 M	1	44	14	46	0	0	104	208	96	14	10		35		23	386	614	1000	434
1.5 M	1.5	60	22	46	0	0	128	256	96	14	10		35		23	434	366	1000	386
2.0 M	2	64	34	46	0	0	144	288	96	14	10		35		23	400	534	1000	354
2.5 M	2+ 0.5	84	42	46	0	8	180	360	96	14	10		35		23	538	462	1000	282
3.0 M	1+2	108	48	46	0	8	210	420	96	14	10		35		23	598	402	1000	222
3.5 M	2+1.5	124	56	46	0	8	234	468	96	14	10		35		23	040	354	1000	174
4.0 M	2+2	128	68	46	0	8	250	500	96	14	10		35		23	678	322	1000	142
4.5 M	2+2+0.5	148	76	46	0	16	286	572	96	14	10		35		23	750	250	1000	70
5.0 M	2+2+1	172	82	46	0	16	316	632	96	14	10		35		23	810	190	1000	10
5.5 M	2+2+1.5	188	90	46	0	16	340	680	96	14	10		35		23	NEX	142	1000	-38
6.0 M	2+2+2	192	102	46	0	16	356	712	96	14	10		35		23	890	110	1000	-70
6.5M	2+2+2+0.5	212	110	46	0	24	392	784	96	14	10		35		23	962	38	1000	-142
7,0 M	2+2+2+1	236	116	46	0	24	422	844	96	14	10		35		23	1022	-22	1000	-202
7.5M	2+2+2+1.5	252	124	46	0	24	446	892	96	14	10		35		23	(070	-70	1000	-250
8.0 M	2+2+2+2	256	136	46	46	24	508	1016	96	14	10		35		23	1191	-194	1000	-374
8.5M	2+2+2+2 +0.5	276	144	46	46	32	544	1088	96	14	10		35		23	1266	-266	1000	-446
9.0 M	2+2+2+2+	300	150	46	46	32	574	1148	96	14	10		35		23	1326	-326	1000	-506
9.5M	2+2+2+2+ 1.5	316	158	46	46	32	598	1196	96	14	10		35		23	1974	-374	1000	-554
0.0 M	2+2+2+2+2+2+2	320	170	46	46	32	614	1228	96	14	10		35		23	1486	-406	1000	-586

Only rope checking is mandatory

Suggestion

Daily check - including function test

4.3 每天检查

- 4.3.1 除了每周檢驗外,(吊船規例)規定所有懸吊纜索及安全纜索在每天作業 前必須由台資格的人作檢查。
- 4.3.2 為了確保吊船能夠繼續安全地使用,我們極力倡議在每天開工或值班前,合資格的人(或如鄉有資歷的操作員)應同時檢查其他可直接影響 吊船安全的組件。典型的檢查範圍應包括:
 - 電氣系統及組件:
 - 一 救生繩及安全帶:
 - 貓定及支撐裝置:
 - 鋼絲纜索:以及
 - 功能/操作測試。

以上每項目的詳細檢查程序應與每周檢驗的程序相同,請參閱本節第 4.23分段。

4.4 其他定期性檢查

4.4.1 絕大部分情況下,製造商亦會要求其他定期性的檢查,例如經過某數量 的工作周期後或每月/每字檢查某些組件。典型例子如檢查制數碟及制動 視片間的空隙。該檢查百在決定那些組件是否須要維修或更換,以保持 吊船的操作安全。應參與製造而的操作及維修手冊。

4.5 参與檢查的人應具備的能力

4.5.1 吊船的檢查必須由合資格的人進行。合資格的人通常路機械按工・不過。 若用船操作資與有分額的與於土檢查吊船,他亦可以成第一名台資格的人。 一位台資格的人應營受專業訓練,擁有程券的知識設在處理同類吊船的檢查上營有實際的經驗。他亦應僅得去檢及評估可能影響吊船操作 安全的欠從地方沒帶在總數。此外、因為在檢查時通常都須要操作吊船。 所以他亦應持有一個根據《托納規例》而發出的有效證明書。

Sec 3.2 Suggestions – Monitoring

Overloading of SWP due to insufficient monitoring of loading condition during SWP operation

Suggestion

Front line staff pay more attention on overloading prevention

Pulling weight missing

Suggestion

Pulling weight must be installed and check daily . Otherwise the safety lock and the safety wire will not function.

Sec 3.3 Suggestions – Equipment

Single climber and safety lock system

Suggestion

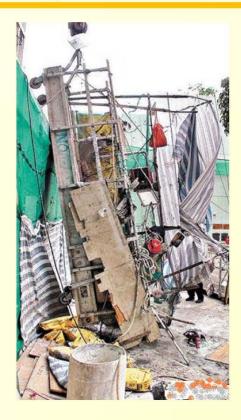
Multi Climber operation eliminates the risk of safety lock failure and extra climber will boost up payload and also facilitate rescue in case of emergency

Failure of single climber and safety lock lead to excessive tilting of SWP, also makes rescue difficult in case of emergency

Suggestion

Multi Climbers & twin climbers operation eliminates the risk of safety lock failure and extra climber facilitate rescue in case of emergency

Single climber & safety lock make it difficult to rescue in inaccessible or isolated locations i.e. end walls



Multi Climbers – Facilitate rescue in case of climber and/or safety lock failure

Single climber & safety lock system make it difficult to rescue in confined spaces in case of climber and/or safety lock failure

Suggestion

Multi Climbers facilitate rescue in case of emergency in confined spaces i.e. collapse of SWP, collapse of workers, failure of equipment

